GCE

Mathematics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

i	$\begin{aligned} & \Delta \text { Mom P }=0.5(2.4+0.2) \\ & \Delta \text { Mom P }=+/-1.3 \mathrm{kgms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	+/- 0.5(2.4 $\pm 0.2)$	MR P/Q +/-0.8(1.5+/-0.2) M1A0
ii	$\begin{aligned} & \text { Momentum before }=0.5 \times 2.4-0.8 \times 1.5 \\ & 0.5 \times 2.4+/-0.8 \times 1.5=+/-(-0.5 \times 0.2+/-0.8 \mathrm{v}) \\ & \text { Speed }=0.125 \mathrm{~ms}^{-1} \\ & \text { OR } \\ & \Delta \text { Mom Q }=+/-(+/-0.8 \mathrm{v}-0.8 \times 1.5) \\ & \\ & 1.3=+/-(0.8 \mathrm{v}-0.8 \times 1.5) \\ & \text { Speed }=0.125 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1ft A1 [4] B1 M1 A1ft A1	$+/-(0.5 \times 2.4-0.8 \times 1.5)$ Uses mom before $=$ mom after Cv (Expression for before momentum) $1 / 8$, +ve (not 0.13) Uses \triangle Mom $\mathrm{P}=\Delta$ Mom Q $\operatorname{Cv}(\operatorname{ans}(\mathrm{i}))=+/-(+/-0.8 \mathrm{v}-0.8 \times 1.5)$ $1 / 8$, +ve (not 0.13)	Cont MR 0.5×2.4-0.8×1.5 Uses mom before $=$ mom after $0.5 \times 2.4+/-0.8 \times 1.5=+/-(0.8 \times 0.2+/-0.5 \mathrm{v})$ 0.32 B1 M1A1A1 ft

2	$\begin{aligned} & 10 \operatorname{Cor} S \alpha=8 \\ & 10 \cos \alpha=8 \\ & \alpha=36.9^{\circ} \\ & \text { OR } \\ & 10 \operatorname{Cor} \alpha=\mathrm{F} \\ & 10 \sin \alpha=6 \\ & \alpha=36.9^{\circ} \\ & \text { OR } \\ & \tan \theta=\mathrm{F} / 8 \\ & \tan \alpha=6 / 8 \\ & \alpha=36.9^{\circ} \end{aligned}$	M1 A1 A1 [3] M1 A1ft A1 M1 A1ft A1	Component of $10=8$ Accept 3736.8 and 37 from 36.7 Using value of F (ii) Using $F(=6)$ from (ii) OR $\tan \theta=8 / F$, using value of F from (ii)	CorS is Cos or Sin (passim) Do not accept 36.7
ii	$\begin{aligned} & F=10 \sin 36.9 \\ & F=6 \mathrm{~N} \end{aligned}$ OR $\begin{aligned} & F^{2}+8^{2}=10^{2} \\ & F=6 \mathrm{~N} \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1	$\mathrm{F}=10 \mathrm{CorS} \alpha$ Allow 10Cos53.1 Accept 6.01 (or from 10Cos53.1) or 6.0 Pythagoras, 3 squared terms	anything rounding to 6.0 from correct working. Accept $F^{2}=8^{2}+10^{2}$

3	$v^{2}=(+/-5)^{2}+2 \times 9.8 \times 2.5$ Speed (or v) $=8.6(0) \mathrm{ms}^{-1}$ OR $\begin{aligned} & 0=5^{2}-2 \times 9.8 x s \text { with } v^{2}=(0)+2 \times 9.8(\mathrm{~s}+2.5) \\ & \mathrm{v}^{2}=2 \times 9.8 \times(2.5+1.28) \\ & \text { Speed }=8.6(0) \mathrm{ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [3] } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{gathered}$	Uses $\mathrm{v}^{2}=\mathrm{u}^{2} \pm 2 \mathrm{gs}$, u non-zero Accept $\sqrt{ } 74$ Do not accept -8.6(0) $\mathrm{s}=1.2755 \ldots$ 19.8x3.7755.. Or rounds to 8.6	It is common to see the upwards and downwards motion treated separately. Both parts must be attempted for M1, and both parts must be attempted accurately with cvs for the A1
ii	$\begin{aligned} & 8.6=-5+9.8 \mathrm{t} \\ & \text { Time }=1.39 \mathrm{~s} \\ & \text { OR } \\ & \\ & 9.8 \mathrm{t}^{2}-10 \mathrm{t}-5=0 \\ & \text { Time }=1.39 \mathrm{~s} \\ & \text { OR } \\ & \\ & 2.5=(8.6-5) \mathrm{t} / 2 \\ & \text { Time }=1.39 \mathrm{~s} \\ & \text { OR } \\ & \\ & \mathrm{t}=5 / 9.8+8.6 / 9.8 \\ & \text { Time }=1.39 \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1 M1 A1ft A1 M1 A1ft A1	$\begin{aligned} & \text { Uses v(from (i)) }=+/-5+/-9.8 \mathrm{t} \\ & \operatorname{Cv}(8.60 \text { from (i) }) \\ & +/-2.5=5 \mathrm{t}+/-\mathrm{gt}^{2} / 2 \\ & \\ & 2.5=+/-(5-\text { Speed from (i) }) \mathrm{xt} / 2 \\ & \operatorname{Cv}(8.60 \text { from (i)) } \end{aligned}$ Times to top and ground found and added $\mathrm{Cv}(8.60$ from (i))	It is common to see the upwards and downwards motion treated separately. Both parts must be attempted for M1, and both parts must be attempted accurately with cvs for the A1
iii a) b)		B1 B1 B1 B1 [4]	Straight descending line to taxis Continues straight below taxis Inverted "parabolic" curve, starts anywhere on $\mathrm{t}=0$ Ends below $\mathrm{t}=0$ level, need not be below t axis	Ignore values written on diagrams

4	$\begin{aligned} & \hline 2-\mathrm{F}=0.8 \mathrm{x} 0.2 \\ & \mathrm{~F}=\mathrm{T} \cos 10 \\ & \mathrm{~T}=1.87 \mathrm{~N} \\ & \mathrm{OR} \\ & \\ & 2-\mathrm{T} \cos 10=0.8 \times 0.2 \\ & \mathrm{~T}=1.87 \mathrm{~N} \end{aligned}$	M1 M1 A1 [3] M1 M1 A1	N2L 2 force terms and ma ($\mathrm{F}=1.84 \mathrm{~N}$) $\mathrm{F}=\mathrm{TCorS} 10$ 1.8683.. N2L 2 force terms and ma TCorS10	m is the block mass, award if T not F
ii	$\begin{aligned} & \mathrm{R}-0.3 \times 9.8+\mathrm{TCorS} 10=0 \\ & \mathrm{R}=0.3 \times 9.8-1.87 \sin 10 \\ & \mathrm{R}=2.62 \\ & \mathrm{~T} \cos 10-\mathrm{Fr}=0.3 \times 0.2 \\ & \mathrm{Fr}=1.78 \\ & \mu=1.78 / 2.62 \text { OR } 1.78=2.62 \mu \\ & \mu=0.68 \end{aligned}$	M1 A1ft A1ft M1 A1ft M1 A1 [7]	3 term equation, vertically $\operatorname{cv}(\mathrm{T}(\mathrm{i}))$ 2.61(5..) seen or implied N2L 2 forces for P, component of T $\mathrm{cv}(\mathrm{T}(\mathrm{i})$) seen or implied both terms same sign	Treat as a mis-read R-0.8×9.8-TCorS10 $=0$ leading to $\mathrm{R}=8.16$ (i.e.works on block[2/3] OR N2L 2 forces for $\mathrm{P}+\mathrm{Q}$: $2-\mathrm{Fr}=(0.8+0.3) \times 0.2$ R, Fr unequal to T From correct value of $\mathrm{T}=1.87$ only

5ia		M1	$\mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}^{2}$ used along plane or vertically, with	$\operatorname{Sin} \theta=\left(0.5 \times 9.8 T^{2}\right) /\left(4.9 T+0.5 x 4.9 T^{2}\right)$ gets M1, but in ic. Beware circular argument.
	$s(P)=4.9 \mathrm{~T}+0.5 \mathrm{x} 4.9 \mathrm{~T}^{2}$	A1	$\mathrm{u}=4.9$ or 0 , and $\mathrm{a}=4.9$ or 9.8 appropriately	
	$\mathrm{y}(\mathrm{Q})=(0)+0.5 \mathrm{x} 9.8 \mathrm{~T}^{2}$	A1 [3]	Accept use of t or T Allow g in $Y(Q)$	
b	$(\mathrm{m}) \times 4.9=(\mathrm{m}) \mathrm{g} \sin \theta$	M1*	Allow CorS θ	
	$\theta=30$	A1 [2]		
c	$\begin{aligned} & \mathrm{y}(\mathrm{Q}) / \mathrm{s}(\mathrm{P})=\sin \theta \quad \mathrm{OR} \quad \mathrm{y}(\mathrm{Q})=\mathrm{s}(\mathrm{P}) \sin \theta \\ & 0.5 \times 9.8(2 / 3)^{2} /\left(4.9 \times 2 / 3+2.45(2 / 3)^{2}=0.5\right. \end{aligned}$	M1	Uses appropriate trigonometry to relate distances Verification needs explicit value of $\sin (\mathrm{cv}(\theta \mathrm{ib}))$	$\begin{aligned} & 0.5 \times 9.8(2 / 3)^{2}=\left(4.9 \times 2 / 3+2.45(2 / 3)^{2} \times 0.5\right. \\ & \text { OR } \quad 0.5 \times 9.8 \mathrm{~T}^{2}=\left(4.9 \mathrm{~T}+2.45 \mathrm{~T}^{2}\right) \times \sin 30 \end{aligned}$
	$\begin{aligned} & \mathrm{OR} \quad 0.5 \times 9.8 \mathrm{~T}^{2} /\left(4.9 \mathrm{~T}+2.45 \mathrm{~T}^{2}\right)=\sin 30 \\ & \mathrm{~T}=2 / 3 \mathrm{~s} \quad \mathrm{AG} \end{aligned}$	$\begin{gathered} \mathrm{D}^{*} \mathrm{M} 1 \\ \text { A1 } \\ {[3]} \end{gathered}$		
ii	$\begin{aligned} & \mathrm{v}=4.9+4.9 \times 2 / 3 \mathrm{OR} \mathrm{v}=(0)+9.8 \times 2 / 3 \\ & \mathrm{v}=8.17 \mathrm{~ms}^{-1} \\ & \mathrm{w}=9.8 \times 2 / 3=6.53 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	Uses $\mathrm{v}=\mathrm{u}+$ at, with appropriate u , a values once 8.2 6.5	

$\begin{aligned} & 6 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{x}=\int \mathrm{t}^{2}-9 \mathrm{dt} \\ & \mathrm{x}=\mathrm{t}^{3} / 3-9 \mathrm{t}(+\mathrm{c}) \end{aligned}$ Finds $x(2)$ Displacement $=151 / 3 \mathrm{~m}$ OR $x(2)=\left[t^{3} / 3-9 t\right]_{0}^{2}$ Displacement $=151 / 3 \mathrm{~m}$	M1* A1 D*M1 B1 $\quad[4]$ D*M1 B1	Uses integration of $\mathrm{v}(\mathrm{t})$ Award if +c omitted Allow + c or c omitted Accept 15.3, 46/3. Must be +ve Uses limits[$]_{0}^{2}$ on integrated $\mathrm{x}(\mathrm{t})$ Must be +ve	Awarded if c omitted or assumed 0
ii	$t=0 \mathrm{~s}=0$ or $\mathrm{s}=46 / 3$ hence $\mathrm{x}(0)$ or $\mathrm{c}=0$ or $46 / 3$ Solves $\mathrm{t}^{2}-9=0$ $\begin{aligned} & \mathrm{t}=(\pm) 3 \\ & \mathrm{x}(3)=3^{3} / 3-9 \times 3(+15.3) \\ & \mathrm{x}(3)=-18 \text { (or }-2.67) \\ & \text { Dist }=18 \mathrm{~m} \end{aligned}$	B1* M1* A1 D*M1 M1 D*B1 $\quad[6]$	Needs explanation, may be seen in part i May be implied Value of t when direction of motion changes Substitutes $\mathrm{cv}(\mathrm{t})>2$ in integrated $\mathrm{x}(\mathrm{t})$ Evaluates c - 18 may be implied award if .. Accept 18(.0) [$\mathrm{c}=0$ assumed]	B1* awarded if limits 0 and 3 used correctly Awarded if limits used correctly
iii	$\begin{aligned} & \mathrm{a}=\mathrm{d}\left(\mathrm{t}^{2}-9\right) / \mathrm{dt} \\ & \mathrm{a}=2 \mathrm{t} \\ & 10=2 \mathrm{t} \\ & \mathrm{t}=5 \\ & \mathrm{x}(5)\left(=5^{3} / 3-9 x 5+15.3\right)=12 \mathrm{~m} \end{aligned}$ OR $\left[\mathrm{t}^{3} / 3-9 \mathrm{t}\right]_{2}{ }^{5}=12 \mathrm{~m}$	M1* A1 D*M1 A1 A1 $[5]$ A1	Uses differentiation of $\mathrm{v}(\mathrm{t})$	

7	$\begin{aligned} & \hline \text { Wt cmpts: // plane } \begin{array}{r} 0.6 \mathrm{gsin} 30 \\ \quad \\ \quad \text { Perp plane } 0.6 \mathrm{gcos} 30 \end{array} \\ & 0.6 \mathrm{gsin} 30+/-\mathrm{X}=0.6 \times 10 \\ & \mathrm{X}=+/-3.06 \\ & \mu=3.06 / 5.09(22 . .) \\ & \mu=0.601 \\ & \text { OR } \\ & 3.06=\mu \times 5.09(22 . .) \\ & \mu=0.601 \end{aligned}$	B1 B1 M1 A1ft A1 M1 A1 $[7]$ M1 A1	$\begin{aligned} & +/-2.94 \\ & +/-5.09(22 .)=\mathrm{R} \end{aligned}$ N2L // plane, 2 force terms and ma (allow no g) Both weight cmpt and accn signs same May be implied ($\mathrm{Fr}=0.6 \times 10-0.6 \mathrm{gsin} 30$ used) Uses $\mu=\mathrm{Fr} / \mathrm{R}$ both terms same sign 0.6 Uses $\mathrm{Fr}=\mu \mathrm{R}$ both terms same sign 0.6	Accept Fr for X Accept Fr $=\|\mathrm{X}\|$ Accept $\mathrm{Fr}=\|\mathrm{X}\|$
ii a)	$\begin{aligned} & \mathrm{C}^{2}=3.06^{2}+5.09^{2} \\ & \mathrm{C}=5.94 \mathrm{~N} \\ & \tan \theta=3.06 / 5.09(22 . .) \\ & \text { Angle }=(31)+90 \\ & \text { Angle }=121^{\circ} \\ & \mathrm{OR} \\ & \tan \varphi=5.09(22 . .) / 3.06 \\ & \text { Angle }=180-(59) \\ & \text { Angle }=121^{\circ} \end{aligned}$	M1 A1 M1* D*M1 A1 [5] M1* D*M1 A1	Pythagoras with Fr and R , to find hypotenuse Accept 5.9, 5.95 but not 6(.0) Or $\tan \theta=\mu$ Not 120 $\tan \varphi=1 / \mu$ Not 120	
b)	$\begin{aligned} & \mathrm{C}(=0.6 \times 9.8)=5.88 \mathrm{~N} \\ & \text { Angle }=60^{\circ} \end{aligned}$	B1 B1 [2]		No working needed as C is vertical No working needed as C is vertical

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

